Sediment transport by sea ice in the Chukchi and Beaufort Seas: Increasing importance due to changing ice conditions?

Eicken, H.¹, R. Gradinger², A. Graves³, A. Mahoney¹, I. Rigor⁴
1: Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775-7320, hajo.eicken@gi.alaska.edu
2: Institute of Marine Science, University of Alaska Fairbanks, Fairbanks, AK 99775-7230, gradinger@ims.uaf.edu
3: Nuna Technologies, Homer, AK 99603, nunatech@usa.net
4: Applied Physics Laboratory, University of Washington, Seattle, WA 98105-6698, igr@apl.washington.edu

Sediment-laden sea ice is a widespread phenomenon over the shallow, wide Siberian Arctic shelves, with off-shelf export from the Laptev and East Siberian Seas contributing substantially to the Arctic Ocean's sediment budget. By contrast, the North American shelves, owing to their narrow width and greater water depths, have not been deemed as important for basin-wide sediment transport by sea ice. Observations over the Chukchi and Beaufort shelves in 2001/02 revealed the widespread occurrence of highly sediment-laden ice over an area of more than 100,000 km² between 68 and 74°N and 155 and 170°W. Ice stratigraphic studies indicate that sediment inclusions were associated with entrainment of frazil ice into highly deformed, multiple layers of rafted nilas, indicative of a flaw-lead environment adjacent to the landfast ice belt of the Chukchi and Beaufort Sea. This is corroborated by analysis of buoy trajectories and satellite imagery indicating entrainment in a coastal polynya in the eastern Chukchi Sea in February of 2002 as well as formation of sediment-laden ice along the Beaufort Sea coast as far as the Mackenzie shelf. Analysis of Radarsat Synthetic Aperture (SAR) imagery in conjunction with bathymetric data provided constraints on the water depth of sediment resuspension and subsequent ice entrainment. Sediment loads averaged at 128 t km⁻², with sediment occurring in layers of roughly 0.5 m thickness, mostly in the lower layers of the ice
cover. The total amount of sediment transported by sea ice (mostly out of the narrow zone between the landfast ice edge and waters too deep for resuspension and entrainment) is at minimum 4×10^6 t in the sampling area and is estimated at 5 to 8×10^6 t over the entire Chukchi and Beaufort shelves, representing a significant term in the sediment budget of the Western Arctic Ocean. Recent changes in the Chukchi and Beaufort Sea ice regimes (reduced summer minimum ice extent, ice thinning, reduction in multi-year ice extent, altered drift paths and mid-winter landfast ice break-out events) have likely resulted in an increase of sediment-laden ice in the area. Apart from contributing substantially to along- and across-shelf particulate flow, an increase in the amount of dirty ice significantly impacts (under-)ice algal production and may enhance dispersal of pollutants.
1. Introduction

Research over the past two decades has established that sediment-laden or “dirty” sea ice is a common phenomenon in the Arctic Ocean and its marginal seas. While the entrainment of sediments into newly grown sea ice had been reported in early, mostly anecdotal reports (see discussion in Pfirman et al., 1990), more recent icebreaker expeditions (Larssen et al., 1987; Pfirman et al., 1989; Reimnitz et al., 1993a; Nuernberg et al., 1994; Eicken et al., 2000; Tucker et al., 2001a) and shore-based research (Osterkamp and Gosink, 1984; Kempema et al., 1989; Dethleff et al., 1993; Macdonald et al., 1995; Stierle and Eicken, 2002) have demonstrated that sediment-laden ice appears to be a ubiquitous phenomenon. At the same time, detailed analysis of sediment cores obtained throughout the Arctic revealed that sediment transport by sea ice has been dominating the sedimentation regime in the Arctic Ocean and the Greenland Sea in the recent geological past (Clark and Hanson, 1983; Bischof and Darby, 1997; Noergaard-Pedersen et al., 1998; Behrendts, 1999). Apart from transferring organic carbon (including high fractions of terrigenous carbon, Eicken, 2003), sea-ice transport of sediments plays an important role in the redistribution and dispersal of pollutants (Lange and Pfirman, 1998) and is of importance for sea-ice microbial communities (Junge et al., 2004). Due to the sensitivity of ice optical properties to even small concentrations of opaque impurities the entrainment of sediments furthermore impacts the surface energy balance of the ice cover and significantly reduces the fluxes of shortwave radiation into the underlying water (Warren, 1984; Light et al., 1998; Frey et al., 2001).

The details of the entrainment process are still not all that well understood, although field work (Osterkamp and Gosink, 1984; Kempema et al., 1989; Reimnitz et al., 1993b; Stierle and Eicken, 2002), lab experiments (Reimnitz et al., 1993c; Ackermann et al., 1994; Lindemann, 1999; Smedsrud, 2001) and modeling (Sherwood,
2000; Smedsrud, 2002) have resulted in some progress in the recent past. From this work, it appears that sediment entrainment into sea ice requires resuspension of sediments during episodes of frazil ice formation. The degree of interaction between frazil ice and resuspended sediment particles depends on a number of parameters (grain size, wave height, water depth, initial stratification), but generally sediment entrainment is limited to water depths shallower than 30 m and is most effective in water depths less than 20 m (Reimnitz et al., 1987; Kempema et al., 1989; Sherwood, 2000). The potential role of anchor ice formation in dislodging sediments from the seafloor (Reimnitz et al., 1987) as well as the filtration of turbid water by ice slush at the surface (Ackermann et al., 1994) are not that well understood but are mostly of lesser quantitative importance.

The broad, shallow Siberian shelves with fall ice formation over vast stretches of the seasonally ice-free marginal seas provide ideal conditions for the entrainment and export of sediments (Reimnitz et al., 1994; Eicken et al., 2000). Field observations (Lindemann, 1999; Dethleff et al., 1993, 2000), remote sensing (Eicken et al., 2000; Huck et al., in prep.), analysis of sea-ice trajectories and modeling (Pfirman et al., 1997) as well as deep-sea sediment cores (Noergaard-Pedersen et al., 1998; Behrends, 1999) underscore the importance of ice transport of sediments from the Siberian shelves. In contrast, the Chukchi and Beaufort shelves, with comparatively narrow width and deeper waters (Fig. 1) as well as the lack of an extensional sea-ice drift regime and - until very recently - a predominance of perennial ice appear less important as source areas of sediment-laden sea ice (Reimnitz et al., 1993a and 1994; Eicken, 2003). Nevertheless, based on an analysis of ice-transported mineral grains, Darby (2003) concluded that the Banks Island shelf in the eastern Beaufort Sea represents an important source area. A recent study of the carbon and sediment budget of the Mackenzie shelf established that sea ice transport of organic carbon and particulates represents a major unknown, with
more data and insight required in order to allow for closure of the budget (Macdonald et al., 1998).

With the exception of a pioneering study by Reimnitz et al. (1993b) comprising field work and remote sensing, very little work other than studies of processes at individual localities (Osterkamp and Gosink, 1984; Kempema et al., 1989) has been completed on sediment transport by sea ice in this region of the western Arctic. In contrast, a larger number of icebreaker expeditions (Larssen et al., 1987; Pfirman et al., 1989; Nuernberg et al., 1994; Eicken et al., 1997, 2000), land-based or airborne studies (Dethleff et al., 1993) and remote sensing (Eicken et al., 2000; Huck et al., in prep.) have focussed on the Eurasian Arctic seas. Here, we report on observations of sediment-laden ice in the Chukchi and western Beaufort Sea made during a late spring icebreaker cruise in 2002. Ship-based observations are combined with analysis of sea-ice cores and remote-sensing data to arrive at an assessment of the amount of sediment entrained and exported, its origins and entrainment conditions as well as the importance of ice-transport of sediments in the context of shelf-basin interactions in this region of the Arctic Ocean. One of the unexpected findings of this study was the ubiquity and high concentration of sediments in particular in the lower layers of sea ice. This raises the question as to whether sediment export from this region by sea ice has been underestimated due to a lack of suitable observational efforts, or whether changes in the large-scale sea ice and surface circulation regime (Tucker et al., 2001b; Comiso, 2002; Rigor et al., 2002) are responsible for increased entrainment and export, a question that we will address below.

2. Methods

2.1. Ship-based observations
The study area was traversed by the US Coast Guard Icebreaker "Healy" in May and June of 2002 (Fig. 1). While the ship was underway, ice observations were carried out from the ship’s bridge at 2 hour intervals and once at every sampling site (Figs. 1 and 2) by a team of four observers. Standardized observations were carried out over a 10 minute interval in a corridor of 1 km width to either side of the ship’s track and comprised determination of prevailing ice types, ice thickness, snow depth, distribution of open water as well as estimates of ice affected by colonization by ice algae (“brown ice”) and the areal fraction, small-scale distribution and degree of sediment loading of "dirty" ice, visibly discolored by sediments. Digital photographs of ice conditions to port and starboard and photographs of ice features complemented the observations. A total of 182 observations was completed and data and photographs are available on-line through the JOSS SBI Data Catalog (www.joss.ucar.edu/sbi/catalog). In addition, photographs of stratigraphic cross-sections of the ice cover were obtained by taking images of ice floes broken and rotated 90° on their side along the ship's hull, which was a regular occurrence during standard icebreaking in level ice.

2.2. Sea-ice sampling and measurements

On 17 ice floes, snow samples and ice cores were obtained for measurements of snow and ice properties (Fig. 1). Immediately after drilling with a 9-cm diameter, fiberglass barrel, CRREL-type corer, photographs of ice stratigraphy along the entire core were obtained. Ice temperature was determined with a thermistor probe after drilling small holes into the core at the site. The core was then sectioned into 5 to 10 cm segments and placed in containers for melting aboard ship. At selected depth intervals, 10 cm vertical thick sections were cut and transferred frozen to the Geophysical Institute cold laboratory for production of thin sections for ice textural analysis (as described in Stierle
and Eicken, 2002). On the vessel, ice salinity was measured with a YSI 85 conductivity probe (measurement error <0.02 or <1 % of the bulk salinity, whichever is larger) and sub-samples transferred to 30 ml glass vials for measurements of stable-isotope composition at the stable-isotope facility at the International Arctic Research Center at the University of Alaska Fairbanks. Samples were equilibrated against CO₂ for 12 hours at 18°C with subsequent measurement in a Finnigan MAT-252 mass spectrometer. Internal standards of South Pacific water and Fairbanks precipitation were calibrated against Vienna Standard Mean Ocean Water (VSMOW) and Standard Light Antarctic Precipitation (SLAP), with standard deviations <0.05 ‰. The remainder of selected ice samples was filtered onto pre-combusted, pre-weighed GF/F Whatman filters. The sediment concentration (suspended particulate matter, SPM) was calculated from the dry weight of particulates on the filter. At selected sites, smear slides were prepared of sediment samples and examined under a polarizing microscope to determine grain size and shape and mineral composition.

Ice thickness and snow depth were determined along 19 profiles on 15 ice floes (>8 km of total profile length at 5 m spacing). Measurements were carried out with an electromagnetic induction device (Geonics EM-31) and conductivity data have been inverted based on electromagnetic modeling and empirical relations derived by Haas and Eicken (2001) and Eicken et al. (2001). Additional direct measurements were carried out for validation purposes during the cruise. For comparison, ice growth and melt was also monitored at sea-ice mass balance sites near Barrow, with details provided by Perovich et al. (2001, see also www.arcticice.org).

2.3. Backtrajectory calculations

The potential source area of sediment-laden ice was estimated based on drifting buoy trajectories made available through the International Arctic Ocean Buoy Program
(IABP, web site at http://iabp.apl.washington.edu). An array of 5 principal buoys had
been released in the eastern and central Beaufort Sea in October of 2001 as part of an ice-
mechanics project (Richter-Menge et al., 2002a). Furthermore, the likely trajectories of
ice from several sampling sites were derived from back trajectory analysis using the
gridded fields of ice motion described by Rigor et al. (2002). In addition, ice velocities
and hypothetical trajectories were obtained from Doppler sonar ice velocity observations
at a mooring site over the Mackenzie shelf (Melling, pers. comm.; Galloway and Melling,
1997).

2.4. Analysis of bathymetry and remote sensing data

The distribution of different ice types, open water and the location of the landfast
ice edge have been determined through analysis of Radarsat Synthetic Aperture Radar
(SAR) data and Advanced Very High Resolution Radiometer (AVHRR) data. A mosaic
of C-band (5.3 GHz), ScanSAR wide scenes (100 m pixel size) covering the entire shelf
between approximately 130 and 160 °W was produced for each month from October
2001 through June 2002. Programs provided by the Alaska Satellite Facility (ASF) were
employed for processing of SAR data, including calibration and geolocation. Based on
temporal changes evident in monthly mosaics and drawing on additional AVHRR scenes
and ground truth data, the landfast ice edge was delineated manually in all scenes. For
periods of reduced cloud cover, AVHRR visible and infrared channel scenes (1.1 km
pixel size, with resolution degrading away from the sub-satellite point) were obtained
from the National Oceanic and Atmospheric Administration (NOAA) Satellite Active
Archive for a total of 38 days during the observation period. Scenes were manually
navigated based on ground control points and the coastline using a software package
(Terascan) to minimize geolocation errors.
The National Ocean Service's (NOS) 10-meter Coastal Bathymetry of the Bering, Chukchi, and Beaufort Seas was initially analyzed for the US portion of the study region (for the first series of graphs 9a and 9b). Over 300,000 depth soundings were acquired from various sources to create a 5-meter bathymetry data set covering the nearshore area between Wainwright/Icy Cape east to the Mackenzie Bay, Canada. For Alaska, the GEODAS (GEOphysical DAta System) depth soundings acquired from the National Geophysical Data Center (NGDC) were the primary data source. This information was supplemented with depth soundings derived from the NOAA Electronic Nautical Chart for the Beaufort Sea and the United States Minerals Management Service (Outer Continental Shelf Study MMS 2002-017). In addition, depth soundings in feet below mean lower low water (MLLW) were digitized from the July 28, 1990 (1:47943 scale) NOAA #16082 nautical chart for Point Barrow. The Canadian sounding data extending to the Mackenzie Delta were derived from the Digital Ocean ™ product created by Nautical Data International for the Canadian Hydrographic Service (Mackenzie Bay Chart 7662 and Demarcation Bay To Philips Bay Chart 7661, Copyright © Her Majesty the Queen in Right of Canada – Canadian Hydrographic Service). The sounding data was used to generate a gridded data set from which contours were derived using a kriging technique with Geographic Information Systems (GIS) software from the Environmental Systems Research Institute. The water depth along the landfast ice margin was determined by intersecting the bathymetry polygons with 250 meter grid cells representing the landfast ice edge as determined from the SAR scenes.

2.5. Weather data and ice growth modeling

A simple freezing-degree day ice-growth model was employed to estimate the approximate age of different ice types sampled in the field. The model derives the ice thickness H at time t according to
\[H^2 + (13.1h + 16.8)H = 12.9 \theta , \]

with \(h \) the mean snow depth and \(\theta \) the number of freezing-degree days. The model has been validated with mass-balance data collected at Barrow, details are provided in Eicken (2003).

Weather data (wind speed and direction, air temperature) measured at hourly intervals were obtained from National Weather Service stations at Barrow and Prudhoe Bay (Deadhorse).

3. Results

3.1. Regional distribution and stratigraphic cross-sections of sediment-laden sea ice

The distribution of sediment-laden ice as determined from ship-board observations and ice coring is shown in Fig. 2. Out of all 183 observations, 61 % revealed sediment-laden ice, with an average areal sediment-laden ice fraction of 19 %. Due to the presence of a snow cover concealing surface features during the first half of the cruise and as a result of sediments frequently being confined to the lower layers of the ice, the areal fractions of sediment-laden ice represent minimum estimates and may be higher by as much as factor of two in some regions as based on estimates from ice coring and during the last days of the cruise in mid-June, when the snow cover had been removed over larger areas. Most sightings were of medium sediment-laden sea ice (33 % of all observations), while high and low sediment concentrations accounted for 12 and 16 % of all observations, respectively. The degree of loading was estimated visually (high – ice layers of dark chocolate color present during the entire observation period; medium – patches of dark colored ice with lower concentrations and clean patches inbetween; low – few, small dark patches with faint sediment loading predominant). The highest areal
fraction of sea ice containing sediments and the highest sediment concentrations were observed along the two SSW-NNE transects in the eastern half of the study area, with 29% of the total ice area consisting of sediment-laden ice. The northernmost stretches of cruise track (north of 73 °N, Fig. 2) extended into the multi-year ice pack as detailed in Section 3.2 below. This ice did not exhibit any visual discoloration by sediments and ice-core samples were likewise free of lithogenic particulates other than the background concentration of marine detritus (concentrations of a few mg l⁻¹, Reimnitz et al., 1993a; Eicken et al., 1997). The southern Chukchi Sea was also comparatively free of sediment-laden ice.

Systematic observations of cross-sections of ice floes broken and turned over by the ship revealed the following sediment distribution and ice-stratigraphy patterns:

(1) Sediments distributed evenly throughout the upper layers of the ice cover (Fig. 3a, b). This type of ice, often referred to as turbid ice (Kempema et al., 1989), was comparatively rare in its pure form (Fig. 3a) and observed mostly in the western and central parts of the study area.

(2) Thicker layers of finely dispersed sediments but with layering evident from ice growth and deformation events (Fig. 3c, d). This type of ice along with type (3) was most common and occurred in particular in the eastern and central section of the study area. Fig. 3d shows a representative example with stacks of sediment-laden ice accumulating under cleaner ice of comparable single-layer thickness.

(3) Rafted (note that in this publication, rafting refers to the process of ice deformation resulting in the subparallel stacking of level pieces of ice) and fragmented layers of clean ice with sediment dispersed throughout a solidified frazil and brash ice matrix filling voids between original rafts and fragments (Fig. 3e, f). This type was quite common, with ample evidence of substantial fragmentation and deformation of the sediment-free ice
cover. Fig. 3f represents a transition to type (4) but is typical of a large number of observations with sediment confined to the lower layers of the ice cover.

(4) Well defined layers of high sediment concentrations within a turbid or frazil ice matrix (Fig. 3g). This type of ice was also quite common throughout the central and eastern study area. Typically, sediment layers were found at the base of turbid or frazil ice, overlying or delineating the contours of rafted or fragmented pieces of ice. The lateral extent of these layers varied from a few decimeters (Fig. 3f) to several meters or even tens of meters (Fig. 3g).

(5) Surface sediment patches. Towards the end of the cruise, patches of cm-thick layers of sediments were observed on the ice surface (and at the bottom of meltwater layers) at a few locations. These features are interpreted as the result of surface melt with subsequent retention and concentration of sediments at the ice surface.

3.2. Properties of sediment-laden ice, sediment characteristics and particulate loadings

Both, ship observations and thickness profiling at ice sampling sites revealed a distinct trend of increasing ice thickness towards the northern part of the study area. The northernmost locations (Figs. 1 and 2) were located in multi-year sea ice (>95 % of total area), identified based on its thickness (modal ice thickness of level ice >1.8 m, Perovich et al., 2003), rolling topography indicative of the previous season’s surface melt and the characteristic salinity profile generated by meltwater flushing with values below 0.5 ‰ throughout the uppermost decimeters of the ice cover and a linear increase to values of 3 ‰ and above in the lower half of the ice (Untersteiner, 1968; Eicken et al., 2002). First-year ice, on the other hand, was completely smooth and level in undeformed areas, exhibited modal ice thicknesses of level ice below 1.7 m and apart from a small reduction to values of around 1 ‰ in the uppermost 10 to 20 cm as a result of early melt in June of
2002 did not show any reduction in ice salinity due to meltwater flushing, with values of 4-5 ‰ or higher. The youngest ice, as estimated from the thickness of level ice was found in the southern Chukchi Sea (sites 5-10, level-ice thickness 0.57 ± 0.06 m, and 5-12, level-ice thickness 0.92 ± 0.08 m). While the ice was generally thicker in the western Beaufort Sea, stratigraphic studies revealed that this was mostly due to dynamic thickening (rafting and ridging) of thinner ice sheets (Fig. 3d, f) and frazil ice accumulation (Fig. 3a, b, Fig. 4) rather than undisturbed ice growth. The thickness of the parent ice sheets involved in the rafting and ridging process as determined from ice observations (Fig. 3d-g) varied between 0.1 and 0.4 m. Ice floes visibly deformed by ridging, rafting or through the formation of rubblefields and brash ice accounted for a very high fraction of the total ice area (18 % based on ice observations) and the ice stratigraphy indicates that even the level ice contains a significant fraction of deformed ice.

Core stratigraphic and microstructural analysis (Fig. 4) reveals that sediment inclusions were invariably associated with granular ice resulting from the consolidation of frazil ice crystals accumulating at the surface of the ocean (as in Fig. 3a or 4) or the base of the ice sheet (as in Fig. 3f or g, with fragments of the broken up parent ice sheet enveloped in a frazil matrix). Sediment inclusions were found throughout the entire ice thickness (summary data shown in Table 1). The total sediment loading per unit area parallels the ship-based observations of sediment areal extent and degree of ice discoloration (Fig. 2), with the southwesternmost sample from thin ice exhibiting the smallest value and highest loadings observed along the easternmost transects.

At site 5-16, characterized by moderate to light sediment loading based on ice observations and examination of cores drilled at the site, smear slide analysis showed the sample to be dominated by fine silt and clay (mostly lithogenic material with few diatom frustules and other biogenic particles) with typical grain sizes of a few micrometers and
maximum grain sizes of around 20 µm. Ice-transported sediments a site 5-30, with significantly higher sediment concentrations and areal extent, consisted mostly of fine sand and coarse silt (high fraction of quartz, with some aggregates of fine grained minerals and few biogenic particles), with typical grain and aggregate sizes of 100 µm and maximum grain size around 250 µm.

The stable isotope composition (δ^{18}O) of three sediment-laden ice cores from the western, central and eastern part of the study area is shown in Fig. 5. The lowest δ^{18}O were found in the East (core 6-05) with a mean value of $-1.9 \pm 0.9 \%_o$, with core 5-16 exhibiting the highest δ^{18}O of $0.6 \pm 0.6 \%_o$ and the westernmost core (5-12) averaging at $-1.5 \pm 1.8 \%_o$. With the exception of a single layer in core 5-12 (part of a rafted piece of ice, possibly contaminated by snow) δ^{18}O increases with depth and there is no distinct correlation between sediment concentration and isotopic composition as evident from Fig. 5.

3.3. Backtracking the origins of sediment-laden ice

In order to identify potential source areas for the sediment-laden ice, sea-ice trajectories terminating at a number of sampling sites have been obtained from a combination of observed drift of individual buoys and optimal interpolation of buoy velocity fields (Rigor et al., 2002). These trajectories indicate two different potential source areas for the ice in the southeastern Chukchi and western Beaufort Sea (Fig. 6). For the former, trajectories originate from along the coast between Icy Cape and Barrow, with an estimated ice age of one to three months. The age is likely underestimated, since the optimal interpolation scheme for deriving ice velocity fields does not account for ice-coast interaction, both of which result in shorter trajectories and higher velocities as compared to observations. Ice may also have been transported to the trajectory origin
from further east along the coast, as indicated by the predominantly westward drift of buoy 22206, followed by swift veering of ice motion in conjunction with changes in the wind field (Fig. 7).

Trajectories for the ice sampled in the North and East of the study area follow the general outline of the coast and trail off into the area north of the Canadian Archipelago (Fig. 6). This indicates an origin of the ice in the Beaufort Sea, but owing to the limitations of the trajectory backtracking method does not allow conclusions about the exact source area(s) between Barrow and the Mackenzie Delta. Based on the ice thickness measurements, ice texture and salinity profiles, we can eliminate any possibility of the ice having formed prior to the previous fall freeze-up. This would place the simulated trajectories in deeper water off the Mackenzie shelf during freeze-up. The trajectory of buoy 22206 which passed through the study area and was roughly 500 km to the Northwest at the time of sampling (Fig. 6) also supports an origin between the central Beaufort Sea and the Mackenzie shelf between October and March (Fig. 6).

An upward-looking Doppler Sonar mounted on a mooring north of the Mackenzie Delta (Melling, pers. comm.) has provided further ice-velocity data that more accurately reflect the complex motion resulting from ice-coast interaction. A hypothetical trajectory derived for an ice parcel forming at freeze-up at the mooring site (Fig. 6), indicates that (1) north of the Mackenzie Delta, ice motion is mostly directed toward the west-southwest with the potential for significant export of newly formed ice from a flaw lead or coastal polynya over the northeastern Mackenzie shelf where the landfast ice edge trends roughly SSW-NNE, and (2) even the reduced ice velocity in the shallower shelf waters, with episodes of stagnant ice motion in late October, December/January and April, is sufficiently high to transport sea ice from the Mackenzie shelf into the eastern half of the study area.
3.4. Remote-sensing and weather data from potential source areas of sediment-laden ice

Over the eastern Beaufort shelf freeze-up commenced around October 10 and was mostly complete by October 25, 2001, whereas the western half of the Beaufort shelf experienced freeze-up between October 1 and 15, 2001 based on examination of passive microwave satellite data (NSIDC, 2002). Direct observations of freeze-up in Elson Lagoon near Barrow (October 2, 2001) and the coastal waters around Barrow (October 12, 2001) corroborate these findings.

Wind velocities at Barrow and Prudhoe Bay from just prior to freeze-up to the start of the sampling campaign are shown in Fig. 7. Conditions during freeze-up at Barrow were comparatively calm, with a mean wind speed of 4.6 m s\(^{-1}\) (October 1 to 15, 2001). Except for a one-day storm with a maximum wind speed of 10.3 m s\(^{-1}\), values did not exceed 8 m s\(^{-1}\). These conditions did not result in much frazil ice formation and no sediment was observed visually in offshore landfast ice sampled by coring in several locations. Apart from a late spring storm on April 30, 2002 that is of little relevance for this study as it occurred too close to the onset of melt to have resulted in significant ice formation, a major storm lasted from February 3 to 5, 2002 with peak wind velocities of 18 and 25 m s\(^{-1}\) (out of ESE) at Barrow and Prudhoe Bay, respectively. Examination of AVHRR satellite imagery from November through April, indicates that out of all the periods with hourly wind velocities higher than 10 m s\(^{-1}\), this event generated the largest coastal polynya observed between Point Barrow and Icy Cape (Fig. 8) during the entire winter. Open water and thin ice were present for about a week, with subsequent closure through ice growth and shoreward movement of the ice pack (Fig. 8c). In the Beaufort Sea, the storm did not create much open water but resulted in ice deformation with a significant reduction in floe size (Fig. 8b).
The satellite scenes (AVHRR and Radarsat SAR) also demonstrated that with prevailing shoreparallel winds in the Beaufort Sea (Fig. 7b) and a tightly packed offshore ice pack filling the eastern Beaufort Sea and the Canadian Basin, much fewer openings along the landfast ice occurred during the winter. In fact, it was not uncommon to observe complete stoppage of the ice pack southeast of a line connecting Point Barrow and the Canadian Archipelago, as noted previously (Stringer, 1978). The SW-NE tending lead visible in Fig. 8c demarcates this area of stagnant ice. The only episode of significant generation of open water along the Beaufort Sea landfast ice edge occurred between February 27 and March 7, 2002 (Fig. 8d), and was associated with maximum windspeeds of 10 m s\(^{-1}\) out of the southwestern sector (Fig. 7b).

3.5. Bathymetry constraints on sediment entrainment

Field data and modeling indicate that sediment entrainment into sea ice is generally limited to water depths less than 30 m, and appears to be most effective in water shallower than about 20 m. With the onset of landfast ice formation in October and November, much of the potential source area for sediment-laden ice is thus covered by landlocked sea ice that typically does not break free until well after the start of the melt season. Hence, mapping the location of the landfast ice in relation to bathymetry can provide substantial insights into the distribution of potential sediment entrainment areas during the course of winter. In late December 2001, 59 % of the total length of the landfast ice edge was positioned at water depths between 0 and 15 m (Fig. 9). By early March 2002, the landfast ice had grown outward with 77 % of the fast ice edge in waters between 0 and 25 m deep (Fig. 9). Maps showing the intersection of the landfast ice with the bathymetry (Fig. 10, Table 2), indicate that in mid-February most of the shallow water (<20 m) exposed to drift ice and hence potentially mid-winter sediment export is
confined to an area in the easternmost Chukchi Sea between Point Franklin and Barrow, a few stretches of coastline, in the western and central Beaufort Sea, and a larger area off the Mackenzie Delta (Fig. 10b). It should be noted that Reimnitz et al. (1993b), based on microfossil finds in ice-transported sediments and indirect evidence concluded that entrainment may occur down to depths of as much as 50 m. As evident from Fig. 10 and Table 2, the 50 m isobath is well outside of the landfast ice edge throughout almost the entire the study area.

4. Discussion

4.1. Likely origins of sediment-laden ice and ice-growth history from ice stratigraphy and a simple model

The different types of ice drift data (Section 3.3, Fig. 6) indicate that the northeastern Chukchi coast and adjacent shelf are the source of sediment-laden ice found in the southwestern part of the study area. The young age of this ice is commensurate with formation in a coastal polynya environment in February/March 2002 (Fig. 8), which is also supported by weather records from the area (Fig. 7). Ice sampled to the North and Northeast of Barrow has been shown to originate from along the Beaufort Shelf, possibly as far east as the western Mackenzie shelf (Fig. 6). Further constraints on ice origin and age can be obtained from the ice stratigraphy. A simple freezing-degree day model indicates that with a snow depth of 0.1 m (averaged over the course of the entire winter based on measurements at Barrow and during the sampling campaign), ice growth could at most account for an ice thickness of 1.71 m since freeze-up. Landfast ice formed in mid-October grew to a maximum ice thickness of 1.67 ± 0.10 m based on mass-balance measurements at Barrow. Sediment-laden ice averaged at 1.13 ± 0.36 m thickness in the
southeastern stretches of the study area, with the thickness mode associated with level ice below 1 m, which based on the freezing degree-day model (and a snow depth of 0.05 m) suggests an age of 3.5 months and an origin west of Prudhoe Bay. Only in the northernmost first-year ice did we observe average thicknesses of between 1.7 to 1.8 m, with modal values for level ice well below 1.7 m. However, the ice stratigraphic analysis (Figs. 3 and 4) demonstrates that a significant fraction of this ice, and even the thinner ice to the South, were composed of multiple rafted layers with significant contributions of frazil ice to the total thickness, suggesting a younger age. The parent ice sheet of 0.1 to 0.4 m thickness formed in the month of February and subsequently deformed during rafting events (such as illustrated in Fig. 3e-g), is estimated as on the order of three days to two weeks old (based on the freezing-degree day model). While it is much more difficult to estimate the number and duration of individual rafting events (see, e.g., Toyota et al., in press, for a more detailed discussion) the uniform thickness of ice layers such as those in Fig. 3f, suggests that at least in some cases multiple stacking of ice rafts occurred in a single event.

Ice stratigraphy and sediment distribution also indicate that the entrainment process occurred after initial growth of an ice sheet 0.1 to 0.2 m thick, subjected to single or multiple rafting events. Entrainment of sediment was associated with formation of frazil ice, accumulating underneath the existing, rafted or ridged ice (Fig. 3e-g, Fig. 4). This type of ice growth appears similar to that characteristic of a coastal polynya environment where wind- or tide-induced opening of water lead to formation of nilas (i.e., congelation ice without entrained sediments) or frazil, punctuated by episodic deformation events. This origin in a well-mixed, nearshore environment late in the season is supported by the isotopic composition of thin ice sample north of Barrow (core 5-16, Fig. 5). Assuming a fractionation coefficient of 1.5 to 2 ‰ (Macdonald et al., 1995; Eicken, 1998), the water mass from which the ice formed has a δ¹⁸O lower by this
amount, i.e. –1.4 to –0.9 ‰ for sample 5-16. Based on water column stable isotope measurements during the 2002 USCGC Healy cruise (Cooper, unpubl. data; see also Cooper et al., 1997), this indicates an origin over the well mixed inner shelf of the northeastern Chukchi or western Beaufort Sea. The lower values in particular of sample 6-05 indicate formation in an area with significant influx of river water. For sample 5-12 this could be the southern reaches of the Chukchi Sea, where river inflow reduces surface δ¹⁸O to below –3 ‰ (Cooper et al., 1997). For sample 6-05, a water mass of δ¹⁸O between –3.9 and –3.4 ‰ is commensurate with an origin over the western Mackenzie shelf, where winter surface water δ¹⁸O ranges between –2.5 and 5 ‰ (Macdonald et al., 1999). It should be noted, however, that neither the observed or interpolated buoy trajectories nor the ULS Doppler ice velocities indicate an origin beyond the western Mackenzie region, such as the Banks Island shelf.

4.2. Sediment transport by sea ice and potential relevance for shelf-basin interaction in the western Arctic

The total area of sediment-laden ice observed in spring of 2002 in the Chukchi and western Beaufort Sea amounts to roughly 110,000 km² (with the inner area of higher sediment load defined by a polygon between sites 5-12, 6-01, 6-03 and 5-23 covering 86,000 km², Fig. 1). The mean sediment load for this area as derived from ice core measurements amounts to 128 g m⁻² or t km⁻² (Table 1). With an average sediment-laden areal fraction of 29 % obtained from ice observations (Section 3.1), the total sediment load amounts to 4.1 x 10⁶ t (or 4.1 Tg). Sediment loads increased towards the East and the easternmost sampling sites correspond to the furthest western extent of ice originating from the Mackenzie Shelf, based on ice core data, drift records from buoys, a drift model and moored sonar ice-velocity measurements (Section 3.3, Fig. 6). Hence, it is likely that
a significant sediment load was present in the ice of the central and eastern Beaufort Sea at the time of sampling, raising the total load of the eastern Chukchi and Beaufort Seas to between 5 and 8 Tg.

Compared with previous observations (Kempema et al., 1989; Reimnitz et al., 1993b), this total area of sediment-laden ice is significantly larger. Reimnitz et al. (1993b) described an “abnormally high” amount of sediment-laden ice formed in the central Beaufort Sea in January and February of 1989 over the course of several weeks following a severe storm with peak wind velocities of 27 m s⁻¹. Despite the smaller area of sediment-laden ice surveyed in that study, the overall amount of sediment transported is likely to be of the same order of magnitude as the observations reported here, due to higher sediment loads in 1989 (289 t km⁻²). Some aspects of the 1989 entrainment event are comparable to the formation of sediment-laden ice in the eastern Chukchi Sea in February of 2002, including observations of sediment which “delineated a framework of individual ice blocks and slabs as much as 40 cm thick” (Reimnitz et al., 1993b; Fig. 3). The likely sediment entrainment areas appear to overlap to some extent as well. A major difference is the predominance of sediments in the lower ice layers in 2002, well concealed from surface observations other than those aided by icebreaking operations or exposure of sediments in ridged ice.

The amount of sediment transported in 2002 figures significantly in the sediment budget of the eastern Chukchi and western Beaufort shelves. Coastal retreat supplies at most 15,000 m³ (approximately 20,000 t) of sediments per km of coastline per year (Kempema et al., 1989), which is roughly twice the amount exported out of the shallow shelf zone by the ice field sampled in 2002. Riverine input of sediments from the Kuparuk and Colville drainage basins to the central Beaufort shelf amounts to 740,000 t year⁻¹ according to Reimnitz et al. (1988) as compared with higher estimates on the order of 6 x 10⁶ t year⁻¹ by Milliman and Meade (1983). While the ice loads are much smaller
than input from the Mackenzie river \((124 \times 10^6 \text{ t year}^{-1}, \text{Macdonald et al., 2003})\), ice export of sediments nevertheless plays a role in the Mackenzie shelf budget, in particular as it provides for a very rapid transport mechanism towards the west, directed against the coastal current (Weingartner et al., 1998; Carmack and Macdonald, 2002).

As indicated by the buoy drift both prior and subsequent to the sampling campaign in May/June of 2002, the ice-transported sediments were conveyed from the eastern Chukchi and various locations along the entire Beaufort shelf into the western Chukchi Sea and the adjacent Arctic Ocean (Fig. 6). This overall drift pattern is commensurate with the long-term mean ice motion in this sector of the Arctic which follows the anticyclonic Beaufort Gyre with a velocity on the order of 2.8 km day\(^{-1}\) (Rigor et al., 2002). This westward ice transport of sediments represents an important mode of particulate transfer, and to a lesser extent organic carbon (Macdonald et al., 2003; Eicken, 2003). Much of the sediment load is likely to be released in an area of high water column and benthic production (Naidu et al., 2003) based on typical ice drift velocities (Fig. 1; Rigor et al., 2002) and considering furthermore the bottom melting of sediment-rich lower ice layers. Off- and cross-shelf transport are more difficult to assess, in particular as they impact ice transport of material into the deeper basins. Reductions in ice concentration, thickness and extent over the Chukchi and Beaufort Seas in recent years (Tucker et al., 2001b; Comiso, 2002), increase the likelihood of northward advection of sediment-laden ice, however. Considering that the present study, observations of a single comparable event (Reimnitz et al., 1993b), as well as other reports of similar types of sediment-laden ice in the Chukchi/Beaufort Sea shelf regions (Tucker et al., 2001a; Melling, pers. comm., 2003) suggest potentially much higher transport of particulate matter by sea ice than generally acknowledged (see discussion in Eicken, 2003, and below), a more systematic study of ice-transport of sediments may be required.
4.3. Are sediment entrainment and export from the Beaufort and Chukchi shelves increasing in importance due to a changing sea-ice regime?

The consensus of work up to the present appears to be that sediment entrainment into sea ice over the Beaufort and Chukchi shelves and subsequent export is an interesting and locally important phenomenon, but is not nearly as relevant for large-scale Arctic sediment transport as similar processes occurring over the vast, shallow Siberian shelves (Larssen et al., 1987; Nuernberg et al., 1994; Reimnitz et al., 1994; Pfirman et al., 1997; Noergaard-Pedersen et al., 1998; Behrends, 1999; Eicken, 2003). A significant entrainment and export event in the Beaufort Sea in the winter of 1989 (with similarities to the ice studied here, though observed over a smaller area) was considered abnormal by Reimnitz et al. (1993b). A study of ice trajectories and sediment composition by Pfirman et al. (1997) pointed towards the central Siberian shelves as key entrainment areas. A detailed examination of a single entrainment event off the New Siberian Islands yielded sediment loads in Siberian drift ice exported into the Arctic Ocean and Greenland Sea far surpassing numbers published for the North American Arctic (Eicken et al., 2000). It is at present unclear, how the finding by Darby (2003) of the Banks Island shelf as an important sediment entrainment and source area fits in with the observations of this study. Nevertheless, his study is a notable exception in that it assigns basinwide importance to this shelf area, based on the analysis of ice-transported materials’ mineralogical composition.

Considering that the Chukchi and Beaufort Seas have seen the most significant sea-ice changes throughout the entire Arctic during the 1990s as compared to the previous two decades, increased entrainment and export of sediment-laden ice may be a result of environmental variability and change. This is supported by comparable
observations of sediment-laden ice in the study area by Melling in 2003 (unpublished observations) as well as an increase in sediment entrainment into coastal lagoons near Barrow during the past seven winters as compared to earlier years (Stierle and Eicken, 2002; Shapiro, pers. comm.). Furthermore, Tucker et al. (2001a) found some of the highest particulate loadings throughout their trans-Arctic sampling campaign in sea ice originating from the Chukchi Sea (their sites 207 and 208, Tucker et al., 2001a).

The likelihood of resuspension of sediments during fall freeze-up and in winter has greatly increased since the late 1980s and early 1990s through a combination of several factors. First, fall and winter storms have become more frequent and stronger in the Western Arctic (Serreze et al., 2000). Second, the amount of fetch, and hence wave heights in coastal waters, has increased by up to an order of magnitude with a far northward retreat of the summer minimum ice edge (Comiso, 2002; Drobot and Maslanik, 2003). Third, due to increased summer melt and changes in the circulation regime (Tucker et al., 2001b), thin first-year ice has almost entirely displaced multi-year ice over the Beaufort and northern Chukchi shelves. In combination with increases in storminess, this latter change makes for a more mobile ice cover and is hypothesized to have increased the amount of flaw lead openings, since the weaker first-year ice accommodates such offshore motion more easily through rafting and ridging. While longer-term data supporting this conjecture are not available as of yet, the stratigraphic analysis and growth history of the ice observed in this study as well as in that of Reimnitz et al., (1993b) are indicative of a highly dynamic ice environment with convergence and divergence of thin sea ice in the coastal regions punctuated by frazil formation and sediment entrainment events. This is corroborated by analyses of ice deformation from sequences of Radarsat synthetic aperture radar (SAR), that show some of the highest rates of shear and vorticity in the first-year ice of the Beaufort and Chukchi Seas (Richter-Menge et al., 2002b). Inupiat Eskimo in coastal villages also comment on a more
dynamic ice cover under less stable and stormier weather conditions (Shapiro and Metzner, 1979; Krupnik and Jolly, 2002).

Potentially linked to these large-scale changes are increased occurrences of wintertime landfast ice break-out events, which expose broader stretches of shallow water. This greatly increases the likelihood of frazil formation and sediment entrainment. At Barrow, such events have occurred on a regular basis (i.e., once or twice every couple of years) during the past decade. One such event as observed by Radarsat SAR in December of 2001 is shown in Fig. 11. As in this case, the strong offshore winds leading to the detachment of the shorefast ice also promote wind mixing and the seaward export of sediment-laden frazil ice. Similar to the larger polynya opened up in February of 2002 (Fig. 8), this smaller episode will have contributed to the total sediment load observed in the study area. Such events are important because the areal extent of water outside of the landfast ice edge shallow enough to allow efficient sediment resuspension and entrainment is greatly limited and significantly smaller than the total area of sediment-laden ice observed in different years (Fig. 10, Table 2). After the establishment of a landfast ice cover in late fall, the contrasts between different shelf areas, specifically the broad shallow Siberian shelves and the narrow North American Arctic shelves, are diminished from a sediment-entrainment perspective, because the landfast ice edge tends to stabilize somewhere between the 20 and 25 m depth contour throughout the Arctic (Figs. 9 and 10; Tucker et al., 1979; Shapiro and Barnes 1991; Dmitrenko et al., 1999). With fall storminess and fetch as well as the likelihood of winter ice-break-out events increasing, ice transport may become quantitatively more important in the western Arctic, in particular if the observed changes in sea-ice and atmospheric conditions are part of a continuing trend.

The fate of sediment-laden ice and in particular the locations of sediment release from melting ice are also strongly dependent on the ice regime and in particular the
atmospheric circulation regime. Here, the drop in sea level pressure over the Arctic Basin observed in the 1990s (associated with an increase in the Arctic Oscillation index as an integrated measure of a number of atmospheric changes, Rigor et al., 2002) has led to a weakening of the Beaufort Gyre with a subsequent reduction in the westward ice velocity in the Chukchi and Beaufort Seas by more than a third (Rigor et al., 2002). In conjunction with other shifts in the ice regime (Tucker et al., 2001b), this change appears to have increased the flux of ice (and its sediment load) into the central Arctic.

Increased sediment entrainment has a number of important implications in the context of shelf-basin interactions. Thus, even smaller concentrations of sediments in sea ice have been shown to significantly affect the amount of light penetrating into the water column and the lower ice layers (Light et al., 1998), with substantial impacts on primary production in the ice and water column (Dunton, 1985; Grossmann and Gleitz, pers. comm., 1995; Gradinger et al., submitted). In a study of ice-associated flora and fauna in clean and sediment-laden coastal ice (with sediment loads of 106 t km⁻² comparable to those found offshore), Gradinger et al. (submitted) found a reduction of algal biomass by a factor of 30 and associated decreases in abundance of metazoans. Such negative impacts on primary production can cascade up through the higher trophic levels of the food web. The impact on the highly productive Chukchi Sea ecosystem, with some of the highest levels of ice algal biomass and benthic biomass found anywhere in the Arctic (Naidu et al., 2003; Gradinger et al., in prep.) could be particularly severe. Furthermore, ice transport of sediments can rapidly transport pollutants deposited with sediments in shallow water to the deeper shelf and basins (Lange and Pfirman, 1998; Macdonald et al., 2000). Increasing offshore oil and gas development in the Alaskan and Canadian Arctic is likely to increase both the level of continuous low-level pollutant discharge into the environment as well as the likelihood of a catastrophic release during an oil spill (Atlas, 1979; Macdonald et al., 2000). Mobilization of pollutants accumulating over decades in
shallow-water environments in association with sediment transport may result in their direct transfer to benthic communities and higher trophic levels. At the same time, it needs to be assessed to what an extent oil released in under-ice or open-water environments can be entrained into the ice cover jointly with resuspended sediments. Coagulation and compression of such oil-particle mixtures during ice ageing (Goldschmidt et al., 1995; Stierle and Eicken, 2002) and the subsequent release from landfast or drifting ice could convey oil directly into the sediment layer where the potential impact on the Chukchi and Beaufort ecosystems with their dependence on benthic biomass is high.

5. Summary and conclusions

Ship-based observations and ice sampling revealed the wide-spread occurrence of sediment-laden sea ice over the eastern Chukchi and western Beaufort Sea shelves in late spring of 2002. With an average load of 128 t km⁻² over an area of more than 100,000 km², the more than 4 x 10⁶ t of particulates (and the 1-3 % organic carbon typically associated with western Arctic shelf sediments) transported with the ice contribute substantially to the shelf’s sediment and carbon budget. Of particular importance is the westward trend of this flux, into the high-productivity areas of the Chukchi Sea. The impact of this ice-associated transport on Chukchi and Beaufort Sea ecosystems is complex and as of yet largely unexplored. The comparatively minor benefits extended to benthic communities by the additional input of organic carbon may well be offset by the potential for pollutant transfer from shallow water environments in areas of on- and offshore oil and gas development. Most important, however, is the potentially substantial reduction in (sub-) ice algal primary production, that has been shown to reduce algal
standing stock by more than a factor of 30, with corresponding impacts on metazoan populations (Gradinger et al., submitted).

The distribution of sediments within the ice cover contrasted with observations made of sediment-laden ice in coastal lagoons and the Laptev Sea, as high sediment concentrations were found mostly in the lower layers of the ice. The ice stratigraphy and inferences about ice growth obtained from satellite data and a simple growth model suggest that this distribution is the result of sediment entrainment into frazil ice in a dynamic coastal polynya or flaw lead environment. This distribution of sediments within the ice column renders detection and mapping of sediments using remote-sensing techniques during the melt season difficult and leads to an underestimation of sediment distribution through ship-based and airborne observations. With substantial bottom melt observed during summer in the Chukchi Sea (Perovich et al., 2003), this may induce much higher loss of sediments from melting ice than typically observed on multi-year ice floes retaining much (>80 %) of their sediment load at the surface during summer melt (Freitag, 1999).

The origins and drift of the sediment-laden ice could be traced back through a combination of ice-drift data (from buoys and Doppler Sonar), ice-core analysis and remote-sensing data. Two distinct entrainment regions emerged, with a large polynya opening in the eastern Chukchi Sea between Barrow and Icy Cape in early February 2002. The comparatively large area of water shallow enough for entrainment of sediments in conjunction with landfast ice break-out events that exposed shallow water all the way to the beach to the newly forming ice cover account for efficient entrainment and export of sediments into the offshore Chukchi Sea. Entrainment along the Beaufort Sea coast was such that with the available shallow water areas outside of the landfast ice edge and taking into consideration the dynamics of the ice pack in this region, sediment-laden ice appears to have formed in a number of locations along the entire Beaufort coast.
The Mackenzie shelf constitutes the single largest area of shallow water environment (both prior to and after landfast ice formation) and even with an overall reduction in westward ice drift as a result of large-scale circulation changes (Rigor et al., 2002), ice formed over the Mackenzie shelf during freeze-up in mid-October made it into the easternmost stretches of the study area. Additional input of ice must have occurred in the central and western Beaufort Sea, where the landfast ice edge exposed shallower water during the course of the winter. These findings are also supported by the stable-isotope composition of cores from different sectors of the study area.

Changes in the large-scale sea-ice regime offer one possible explanation for increasing observations of sediment-laden ice in the Beaufort and Chukchi Seas. While one also has to consider the introduction of bias due to better sampling methods and increased sampling in recent years, a number of observations and theoretical considerations suggest that sediment-laden ice may contribute more significantly to shelf sediment dynamics if the observed changes in ice conditions are part of a continuing long-term trend. Of particular importance in this context are mid-winter landfast ice break-out events that could dramatically increase sediment transport and in particular nearshore sediment dynamics.

The present study at best may have offered some additional evidence in a line of observations and considerations of sea ice as a geologic agent in the western Arctic. However, the study of sediment transport by sea ice remains plagued by the episodic and localized nature of entrainment and export events. Remote sensing may offer a way out of this dilemma, but our finding of significant amounts of sediments well concealed under decimeters to more than a meter of clean ice does present a significant challenge in this regard. Nevertheless, the problem is too important from a number of perspectives to be ignored and may require a more concerted observation and monitoring effort that combines ice sampling, remote sensing (including the deployment of underwater sensors
to detect sediments through their modification of ice optical properties) and modeling at one or a few key locations.

Acknowledgements.

We wish to thank personnel onboard USCGC Healy for their professional and friendly support, their “can do” attitude helped considerably in assembling this data set. This work is supported by NSF grant OPP-0125464 as part of the Shelf-Basin Interactions Program. Thanks go to Jackie Grebmeier for all her efforts as part of the SBI Program that made this research possible. Supplemental funding came from the Minerals Management Service Contract 71707. Michael Tapp was a great help in the field and the lab, Marc Webber helped with ice observations, Humfrey Melling provided ULS Doppler data and Patrick Cotter assembled some of the maps. Barrow Arctic Science Consortium (BASC) provided logistics support for measurements in Barrow. Thank you!

References

Freitag, J., 1999. The hydraulic properties of Arctic sea ice - Implications for the small-
Eicken et al.: Sediment-laden sea ice in Western Arctic

Beaufort Sea based on salinity and 18O/16O measurements in water. J. Geophys. Res. 100, 895-919.

Shapiro, L.H., Metzner, R.C., 1979. Historical references to ice conditions along the Beaufort Sea coast of Alaska. University of Alaska, Geophysical Institute, Scientific report.

Table 1: Concentration and loadings of sediment-laden ice

<table>
<thead>
<tr>
<th>Site</th>
<th>Ice thickness, m</th>
<th>Sediment layer thickness, m</th>
<th>Sediment layer salinity, ‰</th>
<th>SPM, mg l⁻¹</th>
<th>n</th>
<th>Sediment loading, g m⁻²</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-12</td>
<td>0.9</td>
<td>0.15</td>
<td>5.5</td>
<td>463</td>
<td>2</td>
<td>69</td>
</tr>
<tr>
<td>6-01</td>
<td>3.9</td>
<td>0.91</td>
<td>2.4</td>
<td>91</td>
<td>3</td>
<td>83</td>
</tr>
<tr>
<td>6-05</td>
<td>2.02</td>
<td>0.40</td>
<td>3.4</td>
<td>508</td>
<td>6</td>
<td>203</td>
</tr>
<tr>
<td>6-08</td>
<td>2.05</td>
<td>0.51</td>
<td>4.1</td>
<td>306</td>
<td>1</td>
<td>157</td>
</tr>
</tbody>
</table>

SPM – Mean concentration of suspended particulate matter, n – number of samples taken at each site

Table 2: Shallow water area outside of the landfast ice edge

<table>
<thead>
<tr>
<th>Date</th>
<th>Water depth ≤ 20 m, km²</th>
<th>Water depth >20 and ≤30 m, km²</th>
<th>Water depth >30 and ≤50 m, km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 6-8, 2001</td>
<td>10,709</td>
<td>6395</td>
<td>19,635</td>
</tr>
<tr>
<td>February 14-16, 2002</td>
<td>9678</td>
<td>2617</td>
<td>18,083</td>
</tr>
</tbody>
</table>
Figure 1: Study area and ice-core sampling sites along USCGC Healy cruise track in May/June 2002 (core numbers indicate month and day of sampling). The numbers in boxes next to selected sampling locations indicate the mean and standard deviation of ice thickness as determined along profiles covering the sampling sites. The 100-m isobath is shown in lighter grey.

Figure 2: Distribution of sediment-laden ice based on observations along the USCGC Healy cruise track. Symbols indicate the area occupied by sediment-laden ice (none, \(\leq 10\% \), \(\leq 50\% \), \(\leq 100\% \)). Also shown: buoy trajectories etc.

Figure 3: Stratigraphic cross-sections and sediment distribution within ice floes broken and turned over on their side along the ship’s hull. All photographs have been aligned so as to show the ice stratigraphy in proper orientation with the top of the floe up. The scale bar on each image is 0.5 m. (a) Block of turbid ice within fine-grained surface ice layer, May 26, 0300 UTC. (b) Turbid ice layer with interspersed blocks of sediment-laden brash ice, June 10, 0700 UTC. (c) Ice floe with higher concentrations of sediments in the form of turbid ice and as sediment-rich patches in the lower layers of the ice, June 11, 1130 UTC. (d) Rafted and deformed layers of sediment-laden ice, June 5, 2140 UTC. (e) Rafted and fragmented layers of clean ice with sediment dispersed throughout solidified frazil and brash ice matrix, June 7, 1200 UTC. (f) Layers of sediments among turbid ice matrix interspersed with and underlying multiple rafts of clean ice, June 7, 1200 UTC; some of the sediment layers have been marked by an arrow, “R” indicates individual ice rafts and “f” shows some of the frazil ice matrix enveloping ice fragments. (g) Sediment-rich layer at base of frazil ice layer, overlying clean ice raft, June 7, 1200 UTC. For approximate locations see Fig. 1 with same-day sampling locations.

Figure 4: Sediment inclusions within sea ice observed at different scales. (a) Cross-section of ice floe (approximately 1 m thick) rafted onto ice sheet by ship at site 5-12. Note the dark layers of sediment in the interior and at the bottom of the ice cover, including a zone surrounding an entrained fragment of ice. (b) Core photograph between 0.35 and 0.47 m depth at site 5-12 (scale shown at left). Note the band of sediment inclusions at the base of a granular ice layer (milky appearance) derived from frazil ice, with clearer columnar ice below sediment band. (c, d) Thin-section microphotographs of a granular ice layer (core 5-12, top is to the left) containing sediment inclusions photographed between crossed polarizers (c) and in plain transmitted light (d). Two sediment aggregates of 1-2 mm diameter are highlighted by a circle in (d).
Figure 5: Stable isotope composition (δ^{18}O) of ice cores from western, central and eastern part of study area (see Fig. 1 for locations). Black bars denote the extent of sediment-laden ice in core.

Figure 6: Simulated and observed ice trajectories in the study region. Shown are the original trajectory of Buoy 22206 and the translated trajectory of the buoy, extrapolated to the sediment-laden ice area (solid squares indicate position of buoy during previous months). The thick solid lines show the simulated ice trajectories for four sampling sites (solid diamonds indicate position of buoy during previous months). The thin line delineates the pseudo trajectory derived from Doppler upward-looking sonar (ULS) measurements at a mooring site north of the Mackenzie Delta (trajectory originates at mooring location).

Figure 7: Wind velocity (12 hour averages) measured at the National Weather Service Stations in (a) Barrow and (b) Prudhoe Bay (Deadhorse) for the time period from October 1, 2001 to June 1, 2002. The wind velocity vectors (pointing upwind) are shown at the top of each panel, with the speed plotted below.

Figure 8: AVHRR satellite scenes (channel 4, thermal infra-red) showing the study area before, during and after the major storm of February 3-5, 2002. Images have been derived from calibrated brightness temperature (T_B) scenes, with grey values inverted so as to show open water ($T_B \approx 271$ K) as black and colder ice in whiter shades.

Figure 9: Frequency histogram showing the water depth distribution at the landfast ice edge in the study area for December 20-22, 2001 (dashed line) and February 28 to March 2, 2002 (solid line).

Figure 10: Distribution of water shallower than 50 m outside of the landfast ice edge in the study area. Water depths between 50 and 30 m are shown in dark grey, between 20 and 30 m in black and water shallower than 20 m is shown in light grey. The landfast ice edge has been derived from Radarsat SAR scenes for December 6-8, 2001 (a) and February 14 to 16, 2002 (b).

Figure 11: Radarsat SAR scene of landfast ice break-out event (scene from December 13, 2001, two days after break-out), showing the complete removal of landfast ice over a stretch of approximately 20 km of the coastline. The 10-m, 20-m and 30-m depth contours from the NOS bathymetry are also shown.
Figure 1
Figure 2
Figure 5
Figure 6
Figure 7
Figure 9
Figure 10

Dec 6-8, 2001

Feb 14-16, 2002
Figure 11